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Abstract— In human-robot collaboration (HRC), it is crucial
for robot agents to consider humans’ knowledge of their
surroundings. In reality, humans possess a narrow field of view
(FOV), limiting their perception. However, research on HRC
often overlooks this aspect and presumes an omniscient human
collaborator. Our study addresses the challenge of adapting
to the evolving subtask intent of humans while accounting
for their limited FOV. We integrate FOV within the human-
aware probabilistic planning framework. To account for large
state spaces due to considering FOV, we propose a hierarchical
online planner that efficiently finds approximate solutions while
enabling the robot to explore low-level action trajectories that
enter the human FOV, influencing their intended subtask.
Through user study with our adapted cooking domain, we
demonstrate our FOV-aware planner reduces human’s in-
terruptions and redundant actions during collaboration by
adapting to human perception limitations. We extend these
findings to a virtual reality kitchen environment, where we
observe similar collaborative behaviors.

I. INTRODUCTION

Our work addresses the critical knowledge gap caused
by sensing limitations in real-time collaborative planning,
particularly the human field of view (FOV). In everyday
tasks, humans naturally adapt their actions based on what
others can see. For example, a driver will position themselves
within another driver’s FOV to signal intent during lane
changes, or a kitchen worker might place a plate within a
chef’s FOV to communicate its readiness without interrupt-
ing their task. In such fast-paced collaborations, agents must
coordinate actions within limited time frames. The success
of the collaboration often hinges on whether all participants
have access to the same information, which can vary due
to FOV or the environment itself. This motivates the need
to actively account for the human’s understanding of the
environment when selecting robot actions [1], [2].

Supported by study insights on human behavior [3], human
FOV significantly shapes their knowledge base (KB) [4],
which in turn influences intentions and leads to varying
behaviors. In collaborative tasks, anticipating human inten-
tions, rather than merely reacting to observed behaviors,
enables more seamless coordination. Prior works that con-
sider FOV do not explicitly integrate intention reasoning into
planning [5] and instead focus on broader situational aware-
ness [6], without incorporating the human’s approximated
120-degree binocular FOV [7]. Both aspects are crucial for
proactive collaboration in fast-paced settings, and our method
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directly addresses these gaps. We focus on collaborative
scenarios where human intentions shift dynamically based
on their KB and the progress of other agents. Specifically,
we examine cases where one human remains engaged in a
task while another agent advances the collaboration, creating
a KB gap—a discrepancy between the human’s perception
and the actual state of the world. By incorporating FOV into
planning, we more effectively mitigate KB gaps and enhance
coordination.

Our work is motivated by the idea of reducing KB gap
in human-robot collaboration (HRC) via robots entering the
human FOV to provide crucial information. To explore the
concept, we adapt the well-known HRC domain, Overcooked
AI [8], to create the Steakhouse domain, which focuses
on collaborative steak cooking with stationary tasks for
food preparation. In this domain, one human agent prepares
ingredients at the chopping board, while the robot handles
plate cleaning at the sink and monitors the steak. Such setup
helps investigate instances where the KB gap increases as
the human focuses on a stationary task for extended periods.

For efficient coordination in fast-paced scenarios, non-
verbal cues are preferred [9]. Specifically, robot maneuvers
that allow the robot to enter the human FOV, update the KB,
and influence the human’s decision on subsequent tasks while
the robot progresses in its own task. By using the Partially
Observable Markov Decision Process (POMDP) framework,
the robot balances actions that advance the task with those
that reduce human’s KB gap. For instance, when the robot
passes by the human with a clean plate, it updates the KB,
prompting the human to proceed with the next task, such as
preparing the steak after chopping.

Given KB, we maintain an additional copy of the world.
Given the challenge of exponential state space growth
in POMDPs, we introduce an hierarchical approach. This
method allows our POMDP formulation to scale yet remain
tractable while considering KB.

To further evaluate our FOV-aware planner, we imple-
mented the Steakhouse domain in virtual reality (VR), allow-
ing experts to collaborate with the robot agent in an immer-
sive environment. VR enables users to experience naturalistic
FOV limitations while interacting with the robot. Users can
move freely and use VR controllers to perform tasks such as
picking up ingredients, chopping, and plating steak, closely
replicating real-world kitchen dynamics, and experiencing
KB gaps due to their FOV. Our VR implementation provides
us insights into practical challenges and effectiveness of our
approach in close to real-world scenarios.

Our key insight is that the KB gap, induced by FOV, af-
fects the effectiveness of HRC. Hence, our work contributes



• a Steakhouse domain designed to investigate KB gap
caused by tasks that require standing in one place for
extended periods;

• an FOV-aware planner that addresses uncertainty re-
garding the human’s intended subtask, with decisions
informed by the KB;

• a hierarchical solver that supports real-time, computa-
tionally efficient FOV-aware human-robot collaboration
within the complex Steakhouse domain; and

• an open-source VR version of the Steakhouse domain 2,
allowing research to explore KB gaps that naturally
arise from the limitations of VR avatars.

II. PROBLEM DEFINITION

Consider a human and an agent collaborating to complete a
task, consisting of multiple subtasks, where the human FOV
is limited. Both agents aim to complete the task efficiently,
minimizing the total amount of time steps taken.

We model the human as a heuristic agent that myopically
selects subtasks to complete the overall task. The human
prioritizes collaborative progress by choosing a subtask based
on its immediate availability, such as picking up meat when
the grill is empty or gathering a missing ingredient. When
multiple subtasks are available and offer equal value in
advancing the task, the human selects one randomly.

The KB is updated continuously as objects enter or leave
FOV. When an object enters the FOV, KB is updated to reflect
the latest status of that object, which remains in the KB with
its most recent status while visible. When an object leaves
the FOV, its last-seen status persists in KB. If the human
later observes that the object is no longer present in its last-
seen location, the object is removed from KB. Additionally,
to capture the delay between an object entering the FOV and
the human acknowledging it, the KB updates only after the
object has been within the FOV for a certain period of time.

Note that human modeling is not a primary focus of
our paper; rather, we use a predefined model to evaluate
our planning approach. The model, which reflects realistic
decision-making in fast-paced collaboration and is used in
prior work [10], provides robust basis for method evaluation.

III. BACKGROUND

A. Knowledge-aware human-robot collaboration

Dating back to the early 2000s, literature on human-
aware robot planning mentioned the concept of human
knowledge [11]. Over time, research has evolved: from
fully cooperating based on human knowledge [11]–[13],
to planning optimally while taking human knowledge into
account [14], to revealing information to build human trust
and cooperation [15], and finally, to influencing human
perception during real-time collaboration [6], [16], [17].

We focus on real-time knowledge-aware collaboration
planning, accounting for human FOV and KB gap. We assess
collaboration behavior in our experiment setup, where KB
gaps naturally arise due to limited FOV, between our FOV-
aware planner and the human-controlled avatar.

2https://github.com/SophieHsu/3d-plan-eval

B. Partially Observable Markov Decision Processes

We consider POMDPs, in which an agent takes actions
to optimize reward by maintaining a belief over partially
observable states. A POMDP is formally expressed as a
tuple (S,A, T,O,Ω, R, γ), with states S, actions A, and
observations Ω. When the agent takes action a ∈ A in state
s ∈ S, it moves to a new state s′ ∈ S with probability
T (s, a, s′) = p(s′|s, a) and receives an observation o ∈ Ω
with probability O(s, a, o) = p(o|s, a). Since it does not
know the true state, the agent uses its observations to
construct a belief b, represented as a probability distribution
over the states. As the agent action selection would be driven
by goals, R is a reward function of the state and, optionally,
the action. γ is a discount factor for future rewards.

Our work considers an online POMDP planner, which uses
forward search in the belief space to locally approximate
the optimal value function. In particular, we plan with
QMDP [18], a popular method that estimates the expected
values of actions based on the current belief and an assump-
tion of no state uncertainty starting from the next time step.
This assumption is sufficient for our approach, as we employ
a few-step exploration rollout to capture potential new human
behaviors resulting from entering FOV and changing KB (see
Sec. V). The Q function is computed with the value function
of the underlying MDP and optimized for a belief state b as

Q(b, a) =
∑
s∈S

b(s)

(
R(s) + γ

∑
s′∈S

T (s, a, s′)V (s′)

)
. (1)

C. Hierarchical human-aware agent planning

In long-horizon human-aware robot planning, where tasks
consist of subtasks, solving large state spaces is a challenge.
Hierarchical methods are effective for two reasons: first, they
decompose long-horizon tasks into low-level motion plan-
ning and high-level decision-making for efficiency. Second,
they align with human thinking, allowing abstract concepts
like intent and preferences to be modeled by the symbolic
planner, while the low-level planner manages motion con-
trol [19]–[22].

Hierarchy has been applied to POMDP [23], while reward-
ing different levels in the hierarchy independently, result-
ing in not incorporating cross-layer information. A similar
hierarchy approach is seen in [24], while they rely on
explicit communication when intention diverges, which is
less effective for fast-paced collaborations.

Our novel planner optimizes low-level actions and ex-
plores interactions within the human’s FOV, updating the
KB. This approach integrates communicative values directly
into low-level actions, allowing the robot to advance the task
while making slight deviations to inform the human, avoiding
complete interruptions with explicit communication. The ab-
stract state search serves as a heuristic for efficient low-level
action selection, integrating long-horizon planning effects.

IV. APPROACH VIA FORMULATING AS A POMDP

When the robot is uncertain about the human’s intended
subtask, specifically in cases that more than one feasible



Fig. 1: Hierarchical online planning. We start by rolling out an action a and obtaining new states (left). Each new state s
undergoes random exploration to obtain observations o (center). Each rolled-out state (marked in orange), with a KB not
seen in previously explored states, is reduced to an abstract state sA. We then perform a look-ahead in the abstract state
space (right). The costs between abstract states, shown in the lower graph, are computed by mapping abstract states back
to the original state space. The planner ultimately chooses the action from the first stage that results in the highest value
V (s′) (highlighted in green), indicating the optimal action.

subtasks exist, stochasticity arises in human actions from
the robot’s perspective. To address this, we formulate the
problem as a POMDP, enabling the robot to reason about
the unobservable human subtask. Furthermore, this approach
allows the robot to select actions that update the KB and sub-
sequently influence the human’s intended subtask, optimizing
collaboration under the uncertainty in human behavior.

While our approach is general, we define it based on
our collaborative cooking application as an example. At a
high level, our POMDP model considers a state space S =
{SW , SR, SH}, where SW represents information about the
world, including whether the grill is empty or not, the onion
is on the chopping board as a whole, or half chopped, or fully
chopped; SR represents information of the robot, including
its position, orientation, and held object; SH represents the
information of the human, including the human’s position,
orientation, held object, KB and subtask.

We assume the robot has full knowledge of sW ∈ SW ,
sR ∈ SR, and the human’s position, orientation, and held
object. These observable variables (also variables in the state
space) constitute the observation space, Ω, in POMDP. With
a given observation, the robot maintains a belief distribution
b over the human subtask, an unobservable variable.

The robot’s objective is to complete all tasks with the
least amount of actions taken. Consequently, we penalize
the robot’s number of steps by defining a negative reward
for each step taken. We describe how we model the human
and robot state dynamics in the subsections below.

A. Robot state dynamics
The robot actions, including up, down, left, right, stay,

and interact with objects, compose the action space, A, in
our POMDP. The state of the robot, sR, changes when the
robot takes an action. For example, the robot’s position, ori-
entation, and held objects change based on actions selected.

B. Human state dynamics

The dynamics of the human state are modeled using a
Markov chain, where each state in the chain encapsulates
variables that describe the human’s current state. Within this
structure, the available human subtasks are determined by the
KB, which influences the possible actions within the Markov
chain. For instance, given a KB with a washed plate in the
sink and a cooked steak on the grill but no garnish prepared,
the available human subtasks will include picking up the
washed plate and picking up an onion. Another example is
a KB where the robot holds an onion, the chopping board is
empty, and the meat remains uncooked on the counter. Now,
the only available human subtask is to pick up the meat.

The KB dynamics adhere to the rules specified in Sec. II.
In our application, an object must be in the human’s FOV
for 3 timesteps before being acknowledged. For example,
the initial KB may not include the robot’s position or held
object, but it updates once the robot remains in the human’s
FOV for the specified duration.

C. Human-Robot interaction

The interactions between the human and robot are embed-
ded into the transition functions. When the robot is not in the
human FOV, sR and sH transition to their next state based
on their individual dynamics. However, once the robot is in
the human FOV, sR and sH are now tightly coupled. The
KB in sH now becomes influenced by sR and the robot’s
action. For instance, if the robot picks up an object in the
environment within the human FOV, the KB in sH is updated
to the robot holding the object.

V. HIERARCHICAL PLANNING

We aim to achieve real-time collaboration in long-horizon
tasks while incorporating FOV and KB. With the POMDP



formation of our problem definition, we introduce an online
hierarchical planner designed for real-time planning. The
method aims to select the action with the maximum Q
value (Eq. (1)) by uniformly sampling possible next states
to explore human FOV, abstracting the discovered states
to reduce the dimension of the searched state space, and
performing a heuristic search on the abstract state space.
Below, we detail these processes.

A. Random exploration

The motivation behind this exploration is to seek out
actions that enter human FOV and change the KB, leading
to new next states s′ with higher V (s′). The exploration
rolls out actions and observations as shown in Stage 2 in
Fig. 1. For our online planner, T (s, a, s′) is the probability
of reaching state s′ starting from state s after following a
trajectory τ = {a, a1, ..., an−1, an}, where a is the initial
action and the trajectory comprises n actions. We compute
T (s, a, s′) based on the estimated likelihood of reaching
s′ with randomly sampled trajectories τ from s. Such a
design captures the influence the trajectory has on the KB
(as mentioned in Sec. IV-C).

B. Mapping to abstract state

To estimate the value of influencing the human’s decision
on the next subtask in terms of task progression, we seek
long-horizon task rewards by searching the abstract space.

For each newly discovered s′ in Stage 2, we construct ab-
stract states sA = f(s), where f : S → SA is an abstraction
function and SA ⊂ S. Such a step is designed to handle
large-state space POMDPs using abstract states to compute
long-horizon plans. We construct the abstract state under the
assumption that once the current human subtask is known
from state s, the human’s FOV limitations are removed, and
the KB accurately aligns with the actual environment. We
additionally assume the robot and human complete subtasks
via the shortest path; therefore, we exclude the position and
orientation information, capturing their influence in the cost
function instead. The remaining human-related variable in
the abstract state space is the human subtask.

C. Heuristic search on abstract states

We estimate the value of each abstract state (see Stage
3 of Fig. 1), with a heuristic function, defined as the
sum of the negative values of the costs C(sAi , s

A
i+1) (see

Fig. 1) for transitioning between abstract states during the
executed trajectory and the immediate reward of reach-
ing each abstract state R(sAi+1). An example of cost
given sAi = {sWi , sRhold nothing, s

H
wash a plate} and sAi+1 =

{sWi+1, s
R
hold onion, s

H
pick up plate} is the smallest number of steps

required for either the robot to reach the onion station or the
human to reach the sink. An example of the reward will be
a reward of 10 for reaching the state with washed plates and
100 for reaching a state that delivered a cooked steak on a
clean plate. In summary,

V (s′) = −C(sA1 , s
A
2 )+R(sA2 )− ...−C(sAn−1, s

A
n )+R(sAn ),

(2)

where n is the look-ahead length in the abstract state space.

D. Online policy

To seek optimal policy for the Q function, we imple-
ment T (s, a, s′) following Sec. V-A for Eq. (1), and with
V (s′) computed based on Eq. (2). We repeat the action
exploration and abstract state search for each step and select
argmaxa∈AQ(b, a).

VI. EXPERIMENT SETUP

Our experiments aim to analyze the collaborative behav-
ior when the robot considers the limited human FOV. We
first analyze simulated experiment results in the Steakhouse
domain (shown in Fig. 2).

A. Steakhouse domain study

As motivated in Sec. I, the two agents in the Steakhouse
domain will cook the meat, chop the onions, and wash the
plates for plating the cooked steak and chopped garnish. To
represent the human FOV, the tiles outside of the human
FOV are black during user studies.

Fig. 2: Steakhouse domain. (Dimmed tiles are completely
black during user studies to simulate FOV.)

B. Human model

We use a human model from prior work [8], which selects
the subtask that immediately contributes to progressing the
collaboration based on the current world state. The model
does not optimize for the horizon of subtasks or the robot’s
actions. Following Sec. IV-B, we obtain a set of available
subtasks and select the next one based on the human model.
Once the subtask is decided, the human will take the shortest
path to complete it, computed using A∗.

C. Robot planner

We apply the formulation of our method as the illustrated
example in Sec. IV. Abstract states capture essential informa-
tion for collaboration tasks, including the status of the grill,
sink, chopping board, and the number of orders remaining.

For forming the abstract state, we define the human’s
internal variable as the subtask they aim to complete, which
in our cooking domain includes tasks such as picking up
meat, chopping onions, washing plates, plating, and serving
steak. Since the subtask is unobservable, we maintain a
belief distribution over the abstract state space throughout
the collaboration. This belief is updated based on observable
information, including human’s current position, heading



Fig. 3: Collaboration behavior in a Peninsula kitchen. Top
row: the baseline robot placing an onion directly on the
chopping board; Bottom row: the FOV-aware robot revealing
the onion to the human before proceeding. (Dimmed tiles are
black during user studies to simulate FOV.)

Fig. 4: Collaboration behavior in a ∩-shaped kitchen. Top
row: the baseline robot (green agent) picks up a plate
assuming the human is aware. Bottom row: the FOV-aware
robot waits for the human to pick up the cooked steak.
(Dimmed tiles are black during the study to simulate FOV.)

direction, and KB. The belief in a specific subtask increases
when the human’s heading direction aligns with the subtask’s
destination, the distance to the subtask decreases, and is
feasible based on the KB.

We implement two robot planners, each with a different
human model. The FOV-aware robot uses a model with FOV
limited to 120 degrees, while the baseline robot employs a
model with full perceptual capability. Both planners consid-
ers rollouts of human trajectories during planning.

D. Qualitative analysis

We analyze behaviors using the same simulated human
model across different robot planners and kitchen layouts,
designed to reflect common household configurations (e.g.,
island-centered, Peninsula kitchens). Each behavior high-
lights how the FOV-aware robot deliberately positions itself
within the human FOV to influence KB.

Behavior scenario 1: Robot walks alongside the human.
In the top row of Fig. 3 (Peninsula kitchen), the baseline
robot (green agent) places an onion on a chopping board
without the human noticing. In the bottom row, the FOV-
aware robot deliberately deviates from its initial path, walk-
ing alongside the human for 3 timesteps to ensure the human
sees it holding the onion.

Behavior scenario 2: Robot positions to stand in front
of workstations. We illustrate how the FOV-aware robot
delays its action to avoid performing tasks outside the human
FOV. Both the FOV-aware and the baseline robot start at the
same position in Fig 4 (∩-shaped kitchen), and both intend

to head to the plate station. In the baseline robot scenario,
the robot walks directly to the plate station and picks up a
plate. The FOV-aware robot, however, turns north and stays
there while the human passes by and travels toward the grill.
It then proceeds to its goal location while the human turns
around to deliver the completed dish. This decision-making
pattern prevents the human from not knowing the plate has
already been picked up.

Behavior scenario 3: Robot aligns its path with the
human FOV. We showcase the FOV-aware robot planning
its path based on the human FOV. In Fig. 5 (island-centered
layout), the FOV-aware robot moves within human FOV with
a staircase-wise trajectory to show it is holding the onion.

Fig. 5: The FOV-aware robot (green agent) follows a
staircase-like trajectory to remain within the human FOV.

E. Quantitative analysis

We simulate the two planners across 6 different layouts,
each tested 10 times, and measure total low-level actions
executed for task completion. We observe that the FOV-aware
planner completed within an average of 152.1± 9.4 actions,
as opposed to 165.1± 10.9 actions of the baseline planner.

VII. USER STUDY

We investigate whether collaboration differences observed
in simulation persist when a simulated robot interacts with
real users, bridging the gap between simulation and real-
world interaction. We conducted a user study (n = 27),
where participants collaborated with different robot planners
in a ∩-shaped kitchen (Fig.4) and an island-centered layout
(Fig.5). To prevent bias, the order of robot planners and
layouts was counterbalanced across participants.

A. User interface design

Participants select subtasks during collaboration, while
human movement follows an A*-computed shortest path.
This design choice eliminates noise introduced by the diverse
ways humans navigate to complete a subtask, allowing the
study to focus on understanding how influencing the KB
gap, assessed by comparing the KB with the world state, can
change the decision-making of the human’s next subtask and
improves collaboration. In summary, we assume the robot
accurately understands the human motion model.

Our interface also supports interrupt actions, including
movement (up, down, left, right), stay, and interact. These al-
low participants to halt subtasks, make one-step adjustments,
or correct actions due to environmental misperceptions. For
instance, if the participant picks up meat assuming that the
grill is free but finds it occupied, they may use interrupt ac-
tions to place the meat on an empty counter. We capture these
interrupt actions as they indicate decision-making shifts.



B. Hypotheses

Hypothesis 1. In the experiment, the KB gap will be
smaller when the human collaborates with the FOV-aware
robot. KB gap is the differences between the KB and the
current world state. For example, if the KB shows the onion
is not chopped, but the world state shows it is chopped,
the KB gap is 1. We expect the FOV-aware robot to reason
over the human’s limited FOV, enabling more accurate KB
updates and more effective task performance.

Hypothesis 2. The human performs fewer interrupt ac-
tions when collaborating with an FOV-aware robot. The
more informed human are of the actual environment, the less
likely they perform subtasks that later become redundant and
change their selected subtasks during execution. This leads to
reducing the need for interrupt actions (defined in Sec. VII-
A) to undo the chosen subtask.

C. Results

We evaluate the impact of robot type and kitchen layout
(independent variables) on KB gap and interruption fre-
quency (dependent variables). A two-way repeated ANOVA
revealed a significant interaction between the independent
variables on KB gap (F (1, 27) = 4.526, p = .043) and
interruption frequency (F (1, 27) = 4.692, p = .039).

Given the significant interactions among independent vari-
ables, we analyzed simple main effects across layouts. In
the ∩-shaped kitchen, FOV-aware robots showed a smaller
KB gap than baseline robots (F (1, 27) = 6.705, p = .015).
In contrast, in the island-centered layout, the data did not
provide sufficient evidence of a statistically significant dif-
ference (F (1, 27) = 0.05, p = .823). Regarding interrup-
tion frequency, working with an FOV-aware robot led to
significantly fewer interruptions in the ∩-shaped kitchen
(F (1, 27) = 7.192, p = .012), while the differences found
in the island-centered layout were not statistically significant
(F (1, 27) = 0.228, p = .636).

We attribute the non-significant findings in the island-
centered layout to the fact that the human can easily observe
the environment. For example, when the human delivers a
prepared dish to the serving counter located on the center
kitchen island, all objects come within the human FOV.

VIII. VIRTUAL-REALITY DEMONSTRATION

In contrast to the experiment setup in Sec. VI, by evalu-
ating collaboration behavior in an immersive VR environ-
ment, we can naturally replicate human FOV limitations
and the time required for stationary tasks, such as chopping
ingredients. Such setup leads KB gap created under realistic
conditions, allowing for a more authentic assessment of
human-robot collaboration. The VR environment effectively
captures the dynamic nature of these limitations, providing
valuable insights into how KB gaps influence decision-
making and task efficiency during collaboration.

A. Virtual reality simulation setup

The VR kitchen (Fig.6) was developed with iGibson [25],
which supports dynamic object states (e.g., onions can be

whole or chopped). We used a Meta Quest 2 headset with
handheld controllers for object interaction, and navigation
was handled via the left-hand toggle while users remained
seated in a rotating chair for safety.

To assess our algorithm with VR, human experts con-
trolled the VR avatar and interacted with a robot in a
rule-based game-play manner (Sec. VI-B). Given VR is an
immersive environment, the FOV limitation is a “built-in
feature” (Fig. 7); hence, the experts navigated the VR kitchen
and selected the next subtask based on their KB.

Fig. 6: VR kitchen Fig. 7: VR first-person view

B. Qualitative analysis

We observed two types of behavior patterns2.
Behavior 1: Robot prolongs its visibility to the human.

The FOV-aware robot deliberately takes additional steps to
remain within human FOV. A strategy observed for extending
visibility is the robot staying in place to remain in the human
FOV for at least 3 timesteps, allowing the human to notice
the item it picked up before leaving the human FOV.

Behavior 2: Robot chose to take a longer path to enter
the human FOV. In the island-centered layout, the FOV-
aware robot takes a longer path around the kitchen island
to deliver a finished dish, ensuring it enters and remains
within the human FOV. In contrast, the baseline robot follows
a shorter path to deliver the dish. Additionally, the FOV-
aware robot waits for the human to complete their task and
turn around before retrieving the garnish from the chopping
board. The baseline robot, on the other hand, picks up the
garnish without waiting for the human to turn around.

IX. CONCLUSION

We introduced a real-time, FOV-aware planning approach
that reduces redundant participant movements, with the main
strength being to proactive adapt robot trajectories to keep
humans informed without sacrificing overall task perfor-
mance. However, due to approximations in real-time action
computation, such as abstract state spaces and heuristic-
based value estimation, participants sometimes perceived the
robot’s actions as sub-optimal or confusing. By highlighting
these strengths and limitations, we aim to inspire further re-
search on environments where human perceptual constraints
influence collaboration.
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